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Summary

This paper addresses the problem of estimation of the Darameters

of the Poisson sum of Gaussian random variables imbedded in a background

of Gaussian noise when only realizations of the sum are observable.

Cumulant matching, maximum likelihood, and an empirically orthogonalized

characteristic function procedures are considered. The characteristic

function and the maximum likelihood procedures produce similar results

in a simulation study. However, the characteristic function procedure

is computationally superior. Conditions under which all procedures are

incapable of parameter estimation are discussed.

- - '?.

Key words: Characteristic function, empirical characteristic function,

compound Poisson, maximum likelihood, normal variables.



1. Introduction

Let the random variable Z0 have a normal distribution with zero

2
mean and variance a2; denote by Z1,Z2 ,..., a sequence of variates which

2
are identically normally distributed with means w and variances a2 he

Z], j=0,1,2,. .. , are taken to be independent of one another and also of

the discrete random variable N, which has a Poisson distribution with

parameter X. The problem of concern in this paper will be the estimation

2 2
of the parameters e (±,Aa 1 ,a2)' when only realizations of the sum

N
X= Z 0 + (1.1)

k=1

are observable.

The topic will be motivated in this section by a brief account of

a certain security price model proposed by Press (1967;1968) which leads

to the estimation problem at hand. Models of this type occur frequently

in communications engineering and can also be categorized as being of

the cumulative damage or asset flow type, so that it is likely to ze of

interest in a wide variety of possible applications.

The fundamental assumptions of the :rice fluctuation model

advocated by Press may be summarized by sup:osing that the net increase

or decrease in value of a security over a given time interval may be

represented as a random sum of independent price changes superimposed on

an independent process of background noise. Each price change is triggered

by the arrival of some "information event," which occurs from time to time

in accordance with a Poisson procpss N(t) having parameter X. The logged

price of the security (which should be adjusted to compensate for stock
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splits, divided payments, and so forth) at some time t can then be

characterized by the equation

N(t)
P(t) = P0 + I Zk + Y(t), t 0, (1.2)

k=1

where P0 is the initial log-price at the base time t=0, the Zk are inde-

pendent random variables representing price changes due to the occurrence

of information events, and Y(t) is the background noise process, Y(O)=0.
Press takes the Zk to be normal with mean i and variance a2 and supposes

2
that Y(t) is a Wiener process with parameter a1, so that Y(t) has station-

ary and independent increments, and for any t>0 Y(t) has a normal distri-
2

bution with zero mean and variance Ot. The processes N(t) and Y(t) are

assumed to be independent of one another and of the Zk. P(t) represents

the log-price of the security rather than the price itself primarily to

account for the empirically Justifiable belief that the variation of price

change should be positively related to the magnitude of a security's value.

Security price data are typically compiled at regular time

intervals, whose length may be taken to be one unit without loss of gen-

erality. Then, letting Xt, .=1,2,..., represent the change in log-price

of the security in the interval (t-I,<, it follows by differencing equation

(1.2) that

N(t)
Xt I Zk  + ZOtt=1,2,... (1.3)

k=N(t-l)+l

where Z0, t = Y(t) - Y(t-1), and so is normally distributed with mean zero

2
and variance a1. Note also that the number of terrs in the summation of

equation (1.3) is N(t) - N(t-1), which is therefore Poisson distributed with

parameter XAt X. Thus Xt is distributed exactly as the random variable
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X of equation (1.1). Furthermore, the log-price changes Xt and Xt, are

independent for t~t' since the processes Y(t) and N(t) have independent

increments and the random variables Z1 ,Z2  , have been assumed indepen-

dent. If a realization of the process P(t), 05t~n is available, then the

problem of estimating its parameters 8 = (L, ,a ' may therefore be

reduced to the problem of estimating the parameters of the distribution

associated with the variate X of (1.1), based on the random sample X1 ,X2 ,..., X .

Empirical investigations of Fama (1965) indicate that the distri-

bution of log-price changes should possess thicker tails and be more peaked

about some measure of central tendency than would be permitted by a Gaussian

distribution. Press' compound events model, represented by equations (1.2)

and (1.3), can be shown to possess these properties (Press, 1968). It is

also in general skewed, a property which some empirical evidence suggests

may be appropriate (Fielitz and Smith, 1972; Leitch and Paulson, 1975).

2. Estimation by Cumulant Matching

3y a conditioning argument, it is easy to show that the distribution

function associated with the random variable X of (1.1) is

F(x,6) = e x_. X 2 2\ (2.1)

q=O q 2)

where

1 ex t2 /2 d
i(x) d i e- t m dt

is the distribution function of a standard normal deviate; the corresponding
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density is

X exp 2(ax- q 2

f(x;e) e 12 (2.2)
V q2. q (a2+qa 2)

the corresponding characteristic function is

~(~) x ( 2 2 iuu- u2 02
-(u;6) = exp1- u a2 + X(e 2 1)}. (2.3)

The cumulants of the distribution may be found by developing the

cumulant generating function log *(u;O) in powers of u. We shall require

the first four of these:

K 1 = X

K U2 + X(L 2 + Cy2)

2 1 2

2 2 (2.4)
K 3 =X14(1 + 3a2

< X( 4 +6wj 2a2 + 3a 4
42 2

Let X,X 2 ...,Xn be a random sample drawn from (2.1). Generally there

will be no need to explicitly consider the underlying process P(t) of

equation (1.2) which may have generated the sample.

Since the density f(x;6) of (2.2) has no simple closed form, it

can be seen that the method of maximum likelihood may not provide a

computationally attractive solution to the problem of estimation of
2 2

(LX, a2 ). For this reason and because of the si-mlicity of (2.4),

Press (1967;4968) has suggested a cumulant matching zrocedure.



Let ., j=1,2,3,4, represent the first four cumulants of the

sample {Xi,X 2, ... Xn}. These are related to the sample mean X and the

n
central moments m = 1 (X.-.) byn j _l

, 2 m2, $3 =m3, K4m 4 3m2. (2.5)

Equating the sample cumulants to the respective population cumulants

given in equation (2.4) yields a system of four equations in the four

unknown parameters. After some reduction the system may be written as

.2
3k K

4 (3- 2 l ( 4
2 K 1 2

2-= h1/ (2.6)

2 K 3 - K 1
Y2

2 - 2 2
1T 2 + a 2

Cumulant matching estimates ( & Xn ln'2 a)' 2 ay then be defined by

requiring that they satisfy the system of equation (2.6). The quartic

equation has, of course, four roots, real or comzlex; in every case to which

this procedure has been applied, it has been found that exactly two of

these are real, and are of opposite sign. The root tc which - should be
n

equated is then that real root which causes the intensity 7arameter esti-

mate X to be positive; that is 1 and n should be of similar sign.

The sample cumulants I. are, apart from <,, not unbiased esti-

mators of the corresponding population cumulants, although they are of

course consistent. They have therefore been replaced in (2.6) by the
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first four of Fisher's k-statistics, which are unbiased (Kendall and

Stuart, I, 1969, p. 281).

7he most attractive feature of cumulant matching is its ease of

application; one has only to compute the first four cumulants (or k-statis-

tics) of the sample and then solve a quartic equation to obtain estimates

which have the desirable properties of consistency and asymptotic normality.

Unfortunately, such estimators appear to possess rather low efficiencies.

in an analysis of the price fluctuations of ten securities used in computing

the Dow Jones industrial average, Press (1967) found that the use of the

cumulant matching method led to infeasible estimates (with either G2 or

-2
02 negative) in every case. After the infeasible parameter estimate was

set equal to zero, he furthermore found that the distribution function

computed by substitution of the estimated parameter values into equation

(2.1) gave a visibly coor fit when -raphically compared to the empirical

distribution 'function associated with the sample X ,X 2 ... Xn . These

estimates were based on sample sizes ranging from 155 to 499, and Press

concluded that much larger sample sizes are required to achieve reasonable

estimates by cuimulant matching. This is ccnsisten- with the siMulation

results to be subsequently presented which indicate that for samples of

size 500, cumulant matching is totally inadequate, at least in those

portions of the parameter space that were conside':ed.
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3. Characteristic Function Estimators

Because the characteristic function O(u,e) associated with the

modified compound Poisson distribution has a reasonably simple form,

it was believed that a method of parameter estimation based on character-

istic functions might provide estimators for the parameter vector
q 2,

9 ~o2, a 2)P with reasonable efficiency and computational tractability.
' 2

Estimates for the true rarameter vector e0 can be obtained by numerically

determining the zeros cr

Sh 2 Re I -u- D--((u;9) - expiux )*j'((u;6))C 2 du = 0 (3.a)
41 J 3e

2 2-or a =vX,&1,a2 and some function '(-). Clearly E(Sn) C under mild

regularity conditions and we can expect that the M-estimators derived from

this system or its discrete counterpart,

2 n D ~u9
S+ 2 Re 7 7 ($(u;3) - expiu 1) =(u;9)2  0 (3.b)

2 2
for some p and a ApU ,o 2, will be consistent and asymptotically normal

(:hornton and Pulson, 1977). An appealirng feat-re of (3.K) is tnat t e

weight function adapts itself to the data under the ourview of the assumed

model, in this case the modified concound Poisson distrizutzon. Apart

from the weighting, equations (3.2) are very similar in form to the

normal equations of nonlinear least squares

v expecte x
- (ex~ecte/ - observed) =

n -



for parameter 8. The observed terms are replaced by expiux. and --he
I

expected terms are replaced by (u;Q). it thus makes sense to choose

the weights ( (u q;8)) in inverse proportion to the standard deviations

of the ( (uq ;) - expiuq x. However, the residuals {O(U ;Q) - exiu qX }

are not uncorrelated. :t will therefore often be advantageous to make

use of this correlation and we shall do so presently.

-t will be more convenient to work with the quantity

y(u;) Re (u;e) + :m O(u;g), (3.2)

and its sample estimate

' (u) Re $ (u) + In $ (u) (3.3)
n n

1- n -1 n.

Sn(u) n 1 expiux. n I (cos ux. + i sin ux.) (3.4)
n j=]

instead of (u;). Clearly £7 (u)) (u;2) and hence E((u)) y(u)
n - n

for all u. t is easy to show that the covariance kernel of the real

crocess z (u) is given by

nn~?(u~) :n cov(: n(u),-nV)

= Re *(-v;8) + :m $(u+v;6) - [Re (u;e) + :2 7(u;f)][Fe ¢(v;e)

+ "M-,(v~) V3 .)

(Eee also r'.ant, unbpubi'shed rh.- . i-sser.atic-, .enssel_ _r Pl' o1iechnic

institute, 1977.) The residuals yn(u) - '/(u;9) ha:e *ovriance Kernel

-1
n K(u,v). Zefine

and

~.v .. 7
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where ul, u2 , .. , up have been chosen so that the matrix K is positive

definite. It is always possible to choose such ul, u2 , ..., up since the

covariance function K(u,v) is positive definite (Feller 1968, Ch. XIX).

The pxl random vector z(6) = K (y - y(8)) has covariance matrix I.

The estimation 6 may be effected through consideration of the objective

function

Cy): - y(8))'K-l(y - y(8)):
-n - n --

q~l 6 ('ul YnU)-y(U ,O))(yn(U Uq)-y(Uq,,8))k q q l (3.8)

q41 qV=1 Yn q q n q q(38

where the k q, q'=1,2,...,p, are elements of the inverse matrix K

Since (Yn - y(e)) is asymptotically p-dimensional Gaussian, Q(e)

2is asymptotically X on p degrees of freedom. Accordingly, estimation of

2 2 2-the parameters ,a,2 by way of Q(e) is approximately a X minimum

crocedure and can be expected to be quite efficient. in fact, this has

been independently and recently shown by Feurverger and McDunnough (1981).

The function Q(6) depends on the unknown value e 0 of the parameters vector

through the matrix K. Estimation could still be effected by regarding

K as a function of the minimizing variable e but such a procedure would

require an inversion of the matrix at each iteration of the minimizing

algorithm and so would lead to computational expense. An alternative to

direct minimization of the x2 _ like statistic is tc, proceed in stages

2.
via a modified X minimum prccedure where the matrix K is held constant

during the differentiation stage and allowed to be variable thereafter.

Instead, we use the fact that the vector n is the mean of the independent

and identically distributed rindom vectors s,, j:1,2,..., n, whose elements

are

• T !-A _L! - -
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s q. = cos(uqXj) + sin(u qX), q=1,2,.. .p,

where X,X .,X is the sample drawn from the population whose para-
1'2' n L

meters are to be estimated. The matrix K in (3.8) may be replaced by

the sample covariance matrix Rn with the general element

qq';n = n-1 ni q_ n(uq)Sjq,_ n(Uq

Thus the characteristic function estimates en may be generated by minimizing

over e the sum

O(e) = (YnCu )-y(U ,e))(( Cu ,)-y(u ,,e))k q q  (3.9)
n E'z n q a nI q q n

where the k q 'are elements of K-. After such estimates are obtained,n -n

they may be refined by using equation (3.5), evaluated at the estimated

parameter values, to re-approximate the covariance matrix K; then a

second minimization step may be performed.

The algorithm outlined in the preceding paragraph has been applied

to simulated data having the modified compound ?oisson Jistribution through

the use of a simplex minimization procedure (Jacoby, K:.owalik and ?izzo, 1972,

p. 79) applied to equation (3.3), where the variables \, z- and z' were

replaced by their logarihms to result in an uncons:ra.ned Droblem. :iscus-

sion of the performance of the estimation procedure will be deferred until

after likelihood is discussed. A total of p=40 points u were used, twenty

placed symmetrically on either side of the origin; the effect of their

placement was not extensively studied, but did not a:7ear to be too crit-

ical, so long as several ;oints were always included near the origin. Since
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ue), where K2 is the variance of the distribution given by (2.2), cor-

2
responds to random variables with unit scale, it seems reasonable to use

the quanity -, where <2 is the sample variance, as a unit of measurement

2
in determining the placement of the u . As a rule of thumb, placing theq

1
two points closest to the origin at ± and then gradually increasing the

2
interval between consecutive points as Jul- appears to work reasonably well.

Figure 1 provides an indication of the agreement of the sample transform

y (u) with the theoretical transform y(u) for a sample of size 500. Wen

thus expect to do reasonably well in estimating the parameters from the

data with p=40.

:n retrospect, it is believed that p could probably have been

chosen to be somewhat less than 40 without seriously degrading the

resultant estimators. If, however, the value p=40 is used in equation

(3.9), it will be found that the sample covariance matrix K will be

:uite illconditioned. Its inversion may therefore sometimes prove to be

numerically troublesome. A moderate (5 to 10 percent) inflation of its

diagonal elements will alleviate this difficulty, and seems to have no

:harmful effect on the estimates.

There are theoretical difficulties associated with the fact that

the function O (e) of equation (3.9) measures the deviation of the empirical

function n (u) from the theoretical function y(u,9) at only a finite

number of points. Although y(u,6) corresponds unicuelv to the character-

istic function (u,,) and so uniquely determines the distribution function

F(x,e) of equation (2.1) it may happen that two distinct feasible para-

meter vectors e and e satisfy v(u ,91) y(u,02) at each of the points
-1 -2 -q -1 q - 2
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UlU2,...,Up even though this cannot be the case identically in u. This

is clearly undesirable since it implies that the estimation procedure is

incapable of differentiating between samples drawn from the distinct dis-

tributions F(x;e 1 ) and F(x;8 2). Fortunately, from a practical point of

view this phenomenon causes no difficulty as longas u1 ,U2,... up are not

too widely spaced, because then the vectors e1 and e2 must be greatly

separated in the parameter space.

In order to make this last statement more precise, consider as

a simple example the use of just six points located on the u-axis at ± e,

± 2E and ± 3e, where e>O. Then by straightforward algebra it can be shown

that the six values y(u,e), u ± , ± 2e, ± 3e, uniquely determine the

four elements of the parameter vector 8 = (P,X,a1 ,2)' if 8 is further

assumed to lie in the reduced parameter space 0R I{8 I < <

2 2
1, 2!,>0}. To continue with this example, suppose the grid size s is

1
chosen equal to -- , which is the position of the smallest positive point

2
according to the previously mentioned rule of thumb, and suppose further

that the sample variance 2 estimates 2 essentially without error. Then,

letting e0  (JJ0,X0,2 0 2 ) denote the true values of -he parameters,letting~ ~~ -0 = (OO'O'20

(3.10)

2 2 2

and

l olT.-- s V7. (3.11)
0

2

Thus 6 will lie in 0 as long as X is in the interval
- is
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X 0 2 '  -1 )  = (0.006, 17.54) (3.12)

167r 9

since then, from equations (3.10) and (3.11)

1W01 2 !5 __ _ T - T

0 2

(3/4 ) 3

For X0 in the interval (3.12), the fact that the values of y(u,e)

at the six points u=t±, -2E, ±3E completely specify 2 within GR allows

one to construct a proof of the strong consistency of the estimates obtained

by minimizing 0n(6) of equation (3.9) over any compact subset of GR

containing the true parameter vector. The proof is totally analogous to

that given by Bryant and ?aulson (1979). If, on the other hand, X0 does

not lie in the interval (3.12) effective simultaneous estimation of all

four parameters is a practical impossibility no matter what method may be

used. The reasons for this phenomenon, which have to do with the insen-

sitivity of the distribution function F(x;e) to its parameters for extreme

values of X, will be subsequently discussed.

The simple example of the preceding paragraphs is not meant to

imply that only six u-values should be used in the computation of the

objective function 0 n(), or even that ulu 2,...,u should be necessarily

equally spaced. Rather, it is intended to at least partially justify the

empirical observation that, even though the measurement of the deviation

between the functions n (u) and y(u;e) at only a finite number of points

poses theoretical difficulties, these should not disqualify the proposed

estimation procedure from practical consideration.
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4. Maximum Likelihood Lstimators

The probability density function of the modified coo-pound Poisson

distribution is given in equation (2.2) and may be expressed as

f(x) = Pf (x)
q=O

where

D = e- q /q!

and

fq(x) = - (x-qi) 21.
2 2) ex2 2( 27T( c1 Cc 2) 2(a 12 2)

In these equations the dependence of f(x), - and f (x) on the parametersq

has been suppressed for later convenience. A system of maximum likelihood

equations can be formed by differentiating the log-likelihood function

2 2 n
XU, ,J,,l ) Z log f(X.)

2 2
with respect to the parameters -, X, oil o21 and set-inz the resulting

expressions equal to zero. This gives

aL h - q (X. - ) f(;') D ('.a)av f(X) 2 2 q -
-U J ] qa 1 l..a 2  -

3L : 1 ' .) - n 0 (4.1b)
' . f(X.) " q ]
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L q 2 2 2 ,2
- f~xj-----. [  2 {(x.-qw) 2  (a2+qC2)\ CX: )

~2 .f(X) 22 - 1 2 0
T1 j q (a +q 2)~~~ 2 ~q 2

L 2 .~ _() q 2( - ()}C 2 f (X.) 0. (4. )

a 2 q (a 1 qa)

Explicit solution of these equations is, cf co rse, imnossitle;

however, it has been possible to express them in a form amenable to a

fixed-point solution. it is convenient for this :grcse to replace the

parameter a2 by

2
J1

:2

Cm) C~m) 2(m) a (' )
Then if u , , o2  r represent the ,alues of the estimates

at the mth iteration of the fIxed zcint algorithm, -he et.ations (4..)

-.av be manipulated to su:zest the following catin :roe.'re:

Inr(. - - (* ) (Lu 2a
(X. yC.)

- q 1

S f(X.) z -

2
2(m1) 2 2

02 n f(X.)- ~2) X)-2 -i (')} .2c
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(m+l)

2 2
X. p f MX) X. qp -

Y)2 2,,f( ( .. 2d)
I ].Yq q(y+q)2

2 X.) (y+q)
: q

where the right hand side of (4.2) is evaluated at the mth values of the

Parameters.

There are an almost unliimited number of ways to transform the

equations (4.1) into a form suitable for a fixed point procedure; the

form of these equaticns is partially motivated by heuristic considerations.

:t has not been possible to prove that this fixed-point scheme must czn-

verge or yield unique solutions but :he algorithm has consistently yielded

reasonable parameter estimates when applied to simulated data.

(M) (m) 2(m) (7)
The convergence of the iterates w , , T2 and y of system

(4.2) is unfortunately extremely slow, so that some sort of acceleration

modification is a practical necessity. An adaption of the Aitken L' process

(Hildebrand, 1974, pp. 567-71) has proven effective. A zetailed deszripzton

is given in Bryant (unpublished Ph.:. Thesis, ?ensselaer Folytechnic

Institute, 1977).

The major disadvantage cf using the fixed-point algorithm to

obtain maximum likelihood estimates for the parameters of the modifiec

compound Poisson process is the inordinate amount f computer time

required. For samples of size 53O the maximum ?.ikelihood zrocedure took

A
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from two to six times as long as the characteristic function procedure,

depending on the values of the parameters chosen (the amount of time

required increased rapidly with A). Furthermore, the time required by

the maximum likelihood method increased with increasing sample size, so

that for very large data sets its use may not be considered economically

feasible. This is not the case with the characteristic function method,

as the time it requires is primarily a function of p. As previously

stated, the value of p usedt in the estimations reported here was 40,

which was quite probably excessive; thus it might be possible to reduce

the amount of computer time required by this procedure without loss in

the accuracy of estimation.

5. Empirical Comparisons

Estimates of the parameters of simulated modified compound poisson

samples of size 500 are tabulated in :able 1, and may be used to at

least partially evaluate the relative desirability of the cum.ulant matching,

characteristic function and maximum likelihood estimation orocedures. in

Liew of the considerable amount of comouter time re-uired b; the character-

istic function and maximum likelihood algorithms, the number of cifferent

combinations of parameter values investigated was necessarily rather small;

in all, the results of 25 simulated samples are contained in the table.

These data clearly indioate that cumulant matzhin; estimates are

noticeably less efficient th3n those provided by the other two procedures.

.n fact, in the majority of oases it was found that the cumulant matching
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method gave infeasible solutions in which one or both of the estimates of
2 2

the variance parameters j2 and a2 were negative. This is :onsistent with

the results obtained by Press in his attempt to fit security price data with

the modified compound Poisson distribution through use of this method of

parameter estimation.

The characteristic function estimates and those obtained by

maximum likelihood are highly correlated, and for most of the 25

samples in Table 1 yield solutions of nearly equal quality. Their

comparison is made more difficult by the apparent fact that for some of

the combinations of parameters considered (notably whenever P=0 and X i),

sample sizes considerably larger than 500 are required for truly effective

estimation by any means. Accordingly, it would have been desirable to

simulate larger samples with which to compare these procedures. This,

however, was determined to be inadvisable due to the excessive amount of

computer time it would have required. instead, the parameters of some

of the distributions were re-estimated using the same data as that upon

which Table 1 is based, where in addition it was assumed that the ratio

2 2
of the variance parameters a2 and a2 was known. :his ad inal infor-

mation increases the precision of estimation of both :rccedures, and also

substantially reduces the length of time required by either algorithm.

The resulting estimates are recorded in Table 2, along with those

calculated from several samples of size 500 not -ncluded in the first data

set. Conclusions similar to those drawn on the basis of Table I are

supported by these data. Again, characteristic function and maximum likeli-

hood estimators appear to do about equally well (an exception occurs in



TABLE 1

Comparison of Cumulant Matching (CM), Characteristic Function (:F)

and Maximum Likelihood (MLE) Estimates of the Parameters

of the Modified Compound Poisscn C's ",.u-ion

w 2  C2  .1a
2  a2

S 21 2Parameters 1 1 2 1 1
CM 5.145 0.403 0.249 -1.060 3.194 0.3u8 0.7R7 -0.408
CF 3.912 0.536 0.992 1.517 2.592 ).431 0.970 0.719
MLE 3.868 0.534 0.987 1.508 2.599 0.429 0.954 0.50

Parameters 1 1 1 0 1 1
CM 2.233 0.215 1.096 -0.159 -0.354 3..170 1.331 1. 4 ,2
CF 1.395 0.338 1.210 0.Sl -0.19 0.329 1.079 1.53P
MLE 1.429 0.332 1.193 0.788 -0.123 0.535 1.061 1.020

Parameters 4 1 1 1 2 1 1 1
CM 3.488 1.121 1.57U 3.154 3.233 0.682 0.537 -i.u52
C- 3.956 0.993 1.079 1.U35 1.352 1.620 0.917 2.157
... 011 0.975 1.192 1.313 1.396 1.578 0.669 2.097

Parameters 1 1 1 1 2 1 1
7M 1.257 0.653 1.09 0.'20 . 35 1.9L3 -0.2, 1.3:

1.039 ).925 .9u7 0.903 u.122 1.Th6 1.302 .u0
1.179 0.727 0.193 0.30L .127 1.94 1.25L 0.513

Parameters 2 2 1 11 2 1 1
01 3.773 5.213 -5.515 -2.505 2.292 3. 901 0.55 -0. -53

,F 2.375 1.696 C.520 0.135 0.9" 7 2.113 1.03 .'24
L .371 1.7C 0.579 0.153 1,._-- . .:, 5 0.2

?aramet.ers 3 1 -

CM 5.063 1. 31 -:0.3C0 -5.022 .:- . -7.3 -'.>
... 3.91 3. .. 2. -  -..-6 I.29 1.. 19

3. 816 3.'50 0.790 1.153 . 12 2.- " . .

Parameters 1 3 1 1 -

CF 1.145 2.549 1.29L C .941 4.". 0.233 7.-73
MLE 1.207 2."18 1.339 0.896 4.75- 7. -2 0.242 0.314

Parameters 2 w: I -
.2.625 3 327.2-. . .
F 2.404 0. 1:7.21 353 1, . 3 5.3 . l 0 9 -

MLE 2.403 0. Y1' 7.2" 0 .3L7 0I- 7.435 0.253 1.2cO

Parameters 0 1 1 1
CM 0.051 3.55 ".7-25 -0.i94 2.227 ".0 -1.55 0 5. 0
CF 0.103 0. ?3 '.29 I.C95 1-"3 .95 0.2u2 1.203
MLE 0.092 0. - :.2 5 07, 4.7-3 0.357 0.2u2 1.196



Table 1 continued

a2  a2  2 2

2 2

Parameters 2 1 1
CM 2.977 0.6C1 -1.191 -1.211 1.509 0.7U4 9.38 0.967

CF 1.363 2. _62 ).247 '.001 1.91 2.930 0.2S3 1 .2'9
MLE 1.362 C.;61 D.2 u 3.952 1.17u .- l 0.286 1.232

FarameterS 2 1 2 1
CM -0.001 is.B]5 12.372 -0.146 4.4-9 1.-6 -0.455 2.517
,'F , >. t!9 . zo 1.599 3. ? q;-; I.j-:7 0.1'?5 0.071

ML. -0. 194 0.357 3.530 2.011 3.999 1.937 0.1;1 0.917

Parameters 2 2 1 2 1
2 M :^ ->.358 2.020 2.)'2 1.312 0.360 -0.1'9

CF 1.573 2.497 7.D3* 1.154 2.9 2.1C9 0.3L2 0.956
MLE 1.93u 2.2-8 .112 9.33 0.331 2.13-F 0.318 0.969

Parameters 2 2 1
CM - u.114 I.L493 3 .1i1 2.235

:F -O.C0 1.34 7  :- 2. 2 1.335
MLZ -C.0C 6 I.87 0.5A7 1.394



!:he case where w=4, X=4, ,Oo 1), and even wh~en tine .'ai lance :arameters

are assumed equal, effective estimation Is not zossjble ovy ei-ner -etno:-_

when -,,=O, X=,: 2=C2=1
112

7he inability to estimate ac~aevwe'-e ,=-,D >

'oth -abies 1 and 2 has b)een ffi.rther suhstantia~zed emo:.-rZca.._-, _-n-' -.a-,

'-e exz-lained by noting4 that the distributionc tn ?x~ fecuatio

(2.:) is nearly si-ngul::ar in thsreizr c when, rez;arbeb_ as -a fu-=i-',-_-

osrameters. 3,; "hIs is meant tnat -he I*= s-i't: s tto~ en:endent

o:~ n certain COrbinatiOTIs of: tie zarameters and so I's cniy very; slightly

2erturbDed as the :caraneter vectcr is allowed to vary cn the h-yrersurfaces

ZeneratedJ b-; fixing -tnese =co-, n.icns equal to some :onstant.S. ~n tnhe

t-ase whnere - :, the =_- erlv.-inz d istr __t ion is s',-metr i z an-d Its -z-r' t

-.. ree -cments are 7a:_hed 9 an svmmetric memoer _ tne c:< --

-='.s :a a:.

wh.ere K:_ 's . ~ t variance. y~-t: in* Z -s .:s e

near the -hv-ersurface -. 9~a-;hre:- '

:.i-eeven -ncu_ n tne .r rarameters ::i::er .

_n e zase cf :atle I where the true :rarameter values are ,-2

1each o.- -he three estimat'on methods "Its the data wt

a curve which Is nearly- symmetric and which h as almost t-he same mean anc4

.ar,:n:e is does the unerlving :ropulation, as can te verifi5.ed b-. the _ se

3-equatlcns (2.4). :hese fitddsrbtosdo not differ---- zreatly rom

one arnother or from the :arent :'-strilbution, and y:et the corres-zond'ing



TABLE 2

-omparison of Characteristic F7,nction (CF) an

Maximum Likelihood (MLE) Estimates of the Parameters cf -he

Modified Compound Poisson Distribution: a a.d 31 Ass2 2 med

X a2 u '-o

2 2

zaramete-s 4 1 1 2 1

-.9'30 9 96 2 *

X.Lr Z 4.3 .973 1.201 2 173 ~ !

Para:7eters

....~ o.3% 0.931 .S- C.333 2.34.

MLE 1.-30 C.833 2.931 . D21 .1 2.299

-sar-e-ers 43 3
-- 3. 9u 3.$55 2.933 . 1- .1 '. -.

MLE 3.342 3.123 0.922 1.36 . 1.132

Parameters 43 -

0LZ4 2. 3 5 " .

Parameters 2

CF 2.423 3.301 3.513 .

LZ 2.425 3.311 .309 - . -
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2 2
estimates for the parameters X, a2 and a2 are quite inaccurate.

The singularity of the modified compound Poisson distribution

with P=0 is especially critical when X is either large or else extremely

small, for reasons which will be discussed shortly. If one is interested

only in fitting a curve to data, then these considerations may not be of

great concern. The precise estimation of the values of the individual

parameters X, 01 and 02 when p is very close to zero, would, however, seem

to require impractically large samples unless X is of moderate magnitude.

Other interrelations among the parameters also exist and may cause

difficulty in estimation. In some portions of the parameter space, for

example, F(x;e) is quite insensitive to perturbations of the parameters on

the surface

A=K

where K1 is the population mean, and this in turn causes the estimators

of A and p to be generally strongly negatively correlated, as is evident

in both Tables 1 and 2. Other such relations are not so obvious. in

an effort to gain some insight into these interrelations, and the effect

they have on estimation, information matrices have been computed and are

given in Bryant and Paulson (1981).

The information matrices reveal a very complicated pattern of

2 2interrelations among the parameters w, X, 01 and 02. No attempt will

be made here to discuss these in complete detail, but rather only two

observations, which will be of use in Section 6, will be noted. It may

be seen that as A increases, F(x;Q) becomes nearly singular, which may

be accounted for by the limiting normality of the standardized variate

A
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X -

2 22/01 + ( +2)

as X- while W, a and a2 are kept fixed. The practical impli:aticn of

this is that if X is much larger than the values investigated in Table 1
.2 2+2)

only parametric combinations which are functions of .u and a 2+ L( 2

may be accurately estimated without recourse to tremendously large samples.

Conversely, if \ is very small the distribution is insensitive to the

2parameters w and a2, since then the "noise" variate Z 0 of equation (1.1) is

dominant. Finally, these matrices indicate that the magnitude of the
2

variance of is a major factor in the overall estimability of the

parameters. As seems reasonable, a small value of a relative to a2

permits more precise estimation than would be possible if this were not

the case.

6. Designed Estimation Experiments

Suppose it is of interest to estimate the parameters 9 = ( 2,2,,oa)'
- 2

of (1.2). if ?(t) can be continuously and :recisely zhserved, the arrival

times of the Poisson process may be recorded alon.z wih the corresponding

jumps of P(t), so that N(t), Y(t) and the Zk are observable. :n this case,

estimation of the vector e is straightforward. -cwever, it is not difficult

to think of applications where continuous observat ion is either not phys-

ically possible or else is not economically feasible, and vet the experi-

menter does possess some control over the times at which the process of

equation (1.2) may be observe2.
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Suppose it has been decided that a fixed number n of observations

of the process P(t) are to be used for purposes of estimation, and for

simplicity it is agreed that a constant inter-observation time At will be

employed. Then it is in the experimenter's interest to determine a value

of at which will lead to parameter estimates of low variability. It should

not be surprising to find that different choices will lead to estimates of

varying quality, but the degree to which this is true turns out to be

remarkable. If reasonable initial estimates of the true parameters are

available, they may be used (in a manner to be described) to great advantage

in the problem of selecting an appropriate inter-observation time.

Given some fixed At, the values P(At), p(2At),... ,P(nAt) yield

by differencing the random sample

X4 = ( Ar) - ?((j-l)At), j=1929 .... n,

where P(O)=P These X. have as their common distribution F(x;,t), the

modified compound ?oisson distribution with the parameter vector

2 22At ( X t, a 2

where \ X-t and OlAt At. The problem of est~mating the parameters
!At

e of the stochastic process is then reduced to that of estimating @At if

any of the procedures discussed in Sections 2-4 is used to obtain the

estimates

e2 -2

-At At' lAt, a2) '

then the vector of process 7arameters is likewise estimated by

2 .2
11 ~ ~~~~~~~~ ^ ^ a ), ,.,,,.I i mi l il l IN
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where :At/At and &2 = 02A/At.
At 1 lAt

It was seen in Section 5 that the character of F(x;8, t ) with

regard to the estimability of its parameters is strongly influenced by
2

the magnitudes of X and al " These quantities may be controlled by

the experimenter with proper selection of the inter-observation time At,

which in turn will permit accurate estimation. In fact, if this is not

done, the near singularity of the information matrices over much of the

parameter space makes it clear that accurate estimation may not be possible.

Let ; be a vector of prior estimates of the process parameters,

and let eAt be the corresponding initial estimates of 6At, If it is

assumed momentarily that the estimates 6At have a covariance matrix not

too dissimilar to - '(6 )- 1 where the jk element of I() is given by
n -At

I (gat) log f(x;tAt) a log f(x;2At) (6.1)4k (At)e =1 Atj Atk

then these information matrices may be used in conjunction with the

initial estimates to approximate, for any given At, the quantities

nVar( ), nVar(X) z nVar( A )/At 2, nVar(&) nVar(iA )/At2 and
At1 t-2

nVar( 2). An approximation of the generalized variance of e may also
2 

-be useful, and is provided by the quantity IT( ~)IAt }- . By calcu-

lating these numbers for several values of At, it is possible to select

an interobservation time which permits near-optimal performance in

terms of the overall variability of the estimates of the process parameters.

It should be mentioned here that 1 I(; ) may not be a very
n -At

good approximation for Var( At ) even if maximum likelihood is used to

generate these estimators and the number of observations is large, since

the information matrices are typically ill-conditioned so that a very slow

approach to the asymptotic iistribution must be expected. This, however,
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does not invalidate the procedure since the information matrices may still

be regarded as indicators of estimability, at least as long as the prior

vector estimate 6 is not too inaccurate.

To illustrate the suggested method, suppose that a process P(t)

has true parameter values i=l, X=5/unit time, o= /unit time and a2=1 which
1 2

are to be estimated based on 500 observations. If the computations indi-

cated above are performed for several values of At (using the true para-

meters as initial estimates) the data of Table 3 will result. There is

a clear indication that an inter-observation time of roughly 0.1 of one

time unit will produce nearly optimal estimates of the process parameters.

On the other hand, if At were to be arbitrarily chosen to be 1.0 (resulting

in an experiment which would run ten times as long, with sampling only

one-tenth as often) effective estimation would be impossible without

dramatically increasing the number of observations.

Four simulated samples of size 500, whose parameters correspond

to inter-observation times of 1.0, 0.2, 0.1 and 0.05 time units, were

generated and their parameters estimated by means of the characteristic

function algorithm. The same stream of random numbers was used in the

creation of each of the samples to facilitate the ccn-parison of data insofar

as possible. Results are displayed in Table 4, and these show that

reasonable estimates are achieved for At in the range from 0.05 to 0.2,

while as predicted the solution obtained for an inter-observation time of

1.0 is quite inaccurate.
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TABLE 3

Effect of :nter-Cbservation Tine

on Parameter Estimation
2 2

"=l X=5 a2=0.5 2=1

2 2 
2 2

At u A i CY C nVar~j) nVar(iAt nVar( ) 'Iva_32nar(i21A n.2 .2;

0t l t 2'1,

1.0 1 5 0.5 1 112.92 2824.7 2824.7 1446.3 1.6.3 6g.5ql

0.2 1 1 0.1 1 6.0847 6.1973 154.93 0.2C932 5.2330 7.7550

0.1 1 0.5 0.05 1 5.3150 1.3424 134.24 0.019248 1.824q ?.12^v

0.05 1 0.25 0.025 5.9360 n.-43382 173.53 0.002u'5' 0.99863 12.959

St 2 0 2l

7 7
1.0 1 5 0.5 1 0.278x10 O.2T8x.O

0.2 1 1 0.1 1 II 0.115x102 .'16xl0

04
0.1 1 0.5 0.05 1 0.573x!0 0.573x10

0.051 1 0.25 0.02511 0.724xl0-1 ".:16x105



TABLE 4

Ef fec :f :iner-observat-in Time cn
Parameter Estimation - Simulation ?esJls

U=l X=5 2=0.5 a 2=1 n=500

p1 2

At .2 ;2 -2tAt lat a2 WI 2

1.0 1.646 3.042 1.781 0.000 1.546 3.02 1.791 0.0CC
0.2 0.900 1.0796 '0.0995 1.065 0.900 5.393 n.LL&8 1.065
0.L 0.338 0.5292 0.0465 1.047 0.939 5.22 0.465 1.07
0.05 1.014 ).2241 ".2252 0.933 I 1.o: 4. 2 0.504 0.933
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While it is true that At was selected with prior knowledge of

the true parameters in this example, it is also evident that it need not

be chosen with extreme precision in order to gain acceptable results.

Thus it is believed that this method can be used with success in con-

junction with reasonable initial estimates. A simple, useful rule of

thumb is the following: if the arrival rate is A per unit time, then
-1

the sampling rate should be (2A) per unit time. The use of such a

selection of inter-observation time can lead to much enhanced parameter

estimates.

I-A
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